设数列{an}是等比数列,Tn=na1+(n-1)a2+...+2an-1+an,已知T1=1,T2=4

设数列{an}是等比数列,Tn=na1+(n-1)a2+...+2an-1+an,已知T1=1,T2=4

题目
设数列{an}是等比数列,Tn=na1+(n-1)a2+...+2an-1+an,已知T1=1,T2=4
1,求数列{an}的首项和公比
2.求数列{Tn}的通项公式
答案
根据题意:
T1=a1=1
T2=2a1+a2=4
因此:
a2=2
q=a2/a1=2
因此:
an=a1*q^(n-1)=2^(n-1)
Tn =n*1+(n-1)*2+.+2*2^(n-2)+2^(n-1).(1)
2Tn= n*2+.+3*2^(n-2)+2*2^(n-1)+2^n.(2)
(2)-(1),得:
Tn=-n*1+2+2²+...+2^(n-2)+2^(n-1)+2^n
Tn=[2^(n-1)-1]+2^n - n
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.