已知函数f(x)满足af(x)+bf(1/x)=c/x,其中a,b,c为常数,且|a|≠|b|,求f′﹙x﹚.

已知函数f(x)满足af(x)+bf(1/x)=c/x,其中a,b,c为常数,且|a|≠|b|,求f′﹙x﹚.

题目
已知函数f(x)满足af(x)+bf(1/x)=c/x,其中a,b,c为常数,且|a|≠|b|,求f′﹙x﹚.
答案
式1:af(x)+bf(1/x)=c/x
取x=1/x,得
式2:bf(x)+af(1/x)=cx
式1等式两边同时取导:
式3:af‘(x)-bf’(1/x)(1/x²)=-c/x²
式2等式两边同时取导:
式4:bf‘(x)-af’(1/x)(1/x²)=c
现在要消去f’(1/x),所以,由式3*a-式4*b得
(a²-b²)f'(x)=-c/x²-c
由于|a|≠|b|,所以a²-b²≠0
得f'(x)=-(c/x²+c)/(a²-b²)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.