已知等腰三角形腰上的中线长为根号三,三角型面积最大值
题目
已知等腰三角形腰上的中线长为根号三,三角型面积最大值
答案
首先设腰长为2a,中线将三角形分为两半,两半的面积相等,取顶角那边的一半形成一个新三角形,
此三角形的三边为a,2a,√3设顶角为c则由余弦定理得3=a^2+4a^2-4(a^2)cosc
所以a^2=3/(5-4cosc),
又由正弦定理得此三角形的面积S=1/2*a*2a*sinc=(a^2)sinc=3sinc/(5-4cosc),
然后对S求导得S'=(-15cosc+12cos^2c+12sin^2c)/(5-4cosc)^2=(-15cosc+12)/(5-4cosc)^2,
令S'=0得cosc=4/5且当cosc
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点