一道初三圆的证明题

一道初三圆的证明题

题目
一道初三圆的证明题
A、B、C为⊙O上三点,D、E分别为弧AB、弧AC的中点,连DE分别交AB、AC于F、G.求证:AF=AG.
答案
要证明AF=AG,只需证∠AGF=∠AFG
要证∠AGF=∠AFG,先连结CD,BE,知
∠AGF=∠C+∠D,∠AFG=∠B+∠E,
由于弧AD=弧BD 弧CE=弧AE
故∠C=∠E,∠D=∠B,即∠AGF=∠AFG
所以AF=AG.
和二楼的一致,但是二楼回答感觉不够清晰,小弟冒昧"补充",
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.