设f(x)是定义在R上的以3为周期的奇函数,若f(1)>1,f(2)=2a−3a+1,则实数a的取值范围是(  ) A.(−∞,23) B.(−∞,−1)∪(23,+∞) C.(−1,23) D.(−

设f(x)是定义在R上的以3为周期的奇函数,若f(1)>1,f(2)=2a−3a+1,则实数a的取值范围是(  ) A.(−∞,23) B.(−∞,−1)∪(23,+∞) C.(−1,23) D.(−

题目
设f(x)是定义在R上的以3为周期的奇函数,若f(1)>1,f(2)=
2a−3
a+1
答案
f(x)是定义在R上的以3为周期的奇函数,
∴f(-2)=f(-2+3)=f(1)>1
而f(-2)=-f(2)=
3−2a
a+1
>1
解得-1<a<
2
3

故选C.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.