设椭圆3x^2+4y^2=12上存在两点关于直线y=4x+m对称,则m的取值范围

设椭圆3x^2+4y^2=12上存在两点关于直线y=4x+m对称,则m的取值范围

题目
设椭圆3x^2+4y^2=12上存在两点关于直线y=4x+m对称,则m的取值范围
答案
本题可以采用设点法或设线法.
用设点计算更快一些.
3x^2+4y^2=12
设椭圆上两点A(x1,y1)、B(x2,y2) 关于直线y=4x+m对称,
AB中点为M(x0,y0).则
3x1^2+4y1^2=12
3x2^2+4y2^2=12
得 :3(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0
即 3*2x0*(x1-x2)+4*2y0*(y1-y2)=0
(y1-y2)/(x1-x2)=-3x0/4y0=-1/4.
得 y0=3x0.代入直线方程y=4x+m
得x0=-m,y0=-3m
因为(x0,y0)在椭圆内部.则3m^2+4(-3m)^2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.