利用待定系数法求常数p、q,使得x^4+px²+q能被x²+2x+5整除
题目
利用待定系数法求常数p、q,使得x^4+px²+q能被x²+2x+5整除
答案
设(x^2+2x+5)(x^2+ax+b)=x^4+px^2+q
x^4+px+q=x^4+(a+2)x^3+(2a+b+5)x^2+(5a+2b)x+5b
所以a+2=0,5a+2b=0
得到a=-2,b=5
所以p=2a+b+5=6,q=5b=25
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- Mary has to study ____a math test A.at B.for C.in D.to
- 凡尔赛体系时间
- 甘薯是用哪些部分繁殖的
- 正四棱锥的高与各棱长的关系
- 2,–9,100,–2.16,900,–0.01的立方根
- 当时他被车撞倒是不是翻译为When he was being knocked down the car
- He said he would go swimming ___________ the rain.
- 在Rt三角形ABC中,∠C=90°,∠A=30°,则a:b:c的值为
- my,today,with,me,you,homework,can,help(?)连词成句 they go to bed ar ten b____ they have to do get u
- 首字母填空:1.India is a d_______ country with a large number of people.