利用待定系数法求常数p、q,使得x^4+px²+q能被x²+2x+5整除

利用待定系数法求常数p、q,使得x^4+px²+q能被x²+2x+5整除

题目
利用待定系数法求常数p、q,使得x^4+px²+q能被x²+2x+5整除
答案
设(x^2+2x+5)(x^2+ax+b)=x^4+px^2+q
x^4+px+q=x^4+(a+2)x^3+(2a+b+5)x^2+(5a+2b)x+5b
所以a+2=0,5a+2b=0
得到a=-2,b=5
所以p=2a+b+5=6,q=5b=25
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.