已知双曲线x2/a2-y2/b=1,过右焦点且倾斜角为45度的直线与双曲线右支有两个交点,则离心率范围是多少?

已知双曲线x2/a2-y2/b=1,过右焦点且倾斜角为45度的直线与双曲线右支有两个交点,则离心率范围是多少?

题目
已知双曲线x2/a2-y2/b=1,过右焦点且倾斜角为45度的直线与双曲线右支有两个交点,则离心率范围是多少?
答案
要使直线与双曲线有两个交点,需使双曲线的其中一渐近线方程的斜率小于直线的斜率,
即 b/a <tan45°=1,即b<a
∵b=根号( c^2-a^2)
∴根号(c^2-a^2)<a,
整理得c<a根号2
∴e=c/a<根号2
∵双曲线中e>1
∴e的范围是(1,根号2)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.