三角形ABC中,O是外心,BD为外接圆直径,H为重心.求证:向量OH=OA+OB+OC
题目
三角形ABC中,O是外心,BD为外接圆直径,H为重心.求证:向量OH=OA+OB+OC
答案
先将向量OB和向量OC相加,得到向量OD(向量OD过BC中点)然后证向量OD+向量OA=向量OH即证AHOD为平行四边形首先OD‖AH(都垂直BC)现在只要证AH=OD=2OE(E为OD和BC交点,即平行四边形OCDB的对角线交点)就成立了延长CO交...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点