中值定理证明

中值定理证明

题目
中值定理证明
设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0 证明至少存在一点g∈(0,1)使得f’(g)f(1-g)=f(g)f`(1-g)
是f(0)=0
答案
令F(x)=f(x)f(1-x)即可,由于F(0)=F(1)=f(0)f(1)=0,满足罗尔定理的条件,因此存在g∈(0,1),使得F'(g)=0,即f'(g)f(1-g)-f(g)f'(1-g)=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.