方程ax^2+bx+c=0和ax^2-bx-c=0中,至少有一个方程有实数根

方程ax^2+bx+c=0和ax^2-bx-c=0中,至少有一个方程有实数根

题目
方程ax^2+bx+c=0和ax^2-bx-c=0中,至少有一个方程有实数根
求证,以上
(a≠0)
答案
(1)当a=0,b≠0时,方程有实根.
(2)当a≠0:
△1+△2=b^2-4ac+b^2+4ac=2b^2>=0.
说明二个判别式中至少有一个大于等于零.
即说明二个方程至少有一个有实根.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.