证明:两个连续奇数的平方差是8的倍数

证明:两个连续奇数的平方差是8的倍数

题目
证明:两个连续奇数的平方差是8的倍数
答案
证明:设两个奇数是2n-1,2n+1(n≥1)
那么连续两个奇数的平方差等于:(2n+1)2-(2n-1)2=8n
因为n≥1 而且是整数
所以这个平方差一定是8的倍数.
(2n+1)²-(2n-1)²=(2n+1+2n-1)(2n+1-2n+1)=4n*2=8n
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.