已知|a|=2,|b|=1,a与b的夹角为60°,向量2ta+7b与a+tb的夹角为钝角,求实数t的取值范围.
题目
已知|a|=2,|b|=1,a与b的夹角为60°,向量2ta+7b与a+tb的夹角为钝角,求实数t的取值范围.
答案
∵夹角是钝角,所以相乘<0
∴(2ta+7b)(a+tb)<0
2ta²+2t²ab+7ab+7tb²<0
而ab=|a||b|cos60°=1
a²=4,b²=1
∴由2ta²+2t²ab+7ab+7tb²<0
得8t+2t²+7+7t<0
即2t²+15t+7<0
(2t+1)(t+7)<0
t∈(-7,-1/2)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点