已知,如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB交AB于点E,且CD=AC,DF∥BC,分别与AB、AC交于点G、F. (1)求证:GE=GF; (2)若BD=1,求DF的长.
题目
已知,如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB交AB于点E,且CD=AC,DF∥BC,分别与AB、AC交于点G、F.
(1)求证:GE=GF;
(2)若BD=1,求DF的长.
答案
(1)证明:∵DF∥BC,∠ACB=90°,
∴∠CFD=90°.
∵CD⊥AB,
∴∠AEC=90°.
在Rt△AEC和Rt△DFC中,∠AEC=∠CFD=90°,∠ACE=∠DCF,DC=AC,
∴Rt△AEC≌Rt△DFC.
∴CE=CF.
∴DE=AF.
而∠AGF=∠DGE,∠AFG=∠DEG=90°,
∴Rt△AFG≌Rt△DEG.
∴GF=GE.
(2)∵CD⊥AB,∠A=30°,
∴CE=
AC=
CD.
∴CE=ED.
∴BC=BD=1.
又∵∠ECB+∠ACE=90°,∠A+∠ACE=90°,
∴∠ECB=∠A=30°,∠CEB=90°,
∴BE=
BC=
BD=
.
在直角三角形ABC中,∠A=30°,
则AB=2BC=2.
则AE=AB-BE=
.
∵Rt△AEC≌Rt△DFC,
∴DF=AE=
.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点