如图①点D是等边三角形ABC的边BC上的一点,连接AD作∠ADE=60°,交△的外角的平分线CE于E
题目
如图①点D是等边三角形ABC的边BC上的一点,连接AD作∠ADE=60°,交△的外角的平分线CE于E
(1)求证AD=DE
(2)当点D运动到CB的延长线上如图②(1)中点的结论是否依然成立?理由.没达二级不能插图.我杯具了= =
答案
(1)过D作AB的平行线交AC于F,则三角形DFC为等边三角形
在三角形ADF和三角形EDC中
角ADE=60度-角FDE,角EDC=60度-角FDE
DC=DF
角DCE=角DFA=120度
所以,三角形ADF和三角形EDC全等
AD=DE,
(2)结论依然成立
理由
过D作AB的平行线交AC的延长线于F,则三角形DFC为等边三角形
在三角形ADF和三角形EDC中
角AFD=角ECD=60度
CD=FD
角FDA=60度+角CDA,角CDE=60+角CDA
三角形ADF和三角形EDC全等
AD=DE,
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点