计算不定积分:∫1/√(1+sinx)dx

计算不定积分:∫1/√(1+sinx)dx

题目
计算不定积分:∫1/√(1+sinx)dx
答案
答:
原积分
=∫1/√(1+cos(x-π/2)) dx
=∫1/√(1+2cos(x/2-π/4)^2-1) dx
=∫1/√(2cos(x/2-π/4)^2) dx
=1/√2 ∫1/cos(x/2-π/4) dx
=1/√2 ∫2sec(x/2-π/4) d(x/2-π/4)
=√2 ln|tan(x/2-π/4)+sec(x/2-π/4)| + C
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.