直线y=kx+2与曲线y=根号(-x^2+2x) (0≤x≤2)存在两个交点,则实数k的取值范围是

直线y=kx+2与曲线y=根号(-x^2+2x) (0≤x≤2)存在两个交点,则实数k的取值范围是

题目
直线y=kx+2与曲线y=根号(-x^2+2x) (0≤x≤2)存在两个交点,则实数k的取值范围是
答案
由曲线方程y=根号(-x^2+2x) (0≤x≤2)可得:(x-1)^2+y^2=1其中0≤x≤2,0≤y≤1因此该曲线为圆:(x-1)^2+y^2=1在x轴上方的半圆,又直线y=kx+2过定点(0,2),因此数形结合可得到实数k的取值范围为[-1,-3/4).
注:数形结合是解决问题的关键.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.