已知数列{an}是首项为a1=1/4,公比q=1/4的等比数列,设bn+2=3(log1/4)an(n∈N*),数列{Cn}满足Cn=an*bn

已知数列{an}是首项为a1=1/4,公比q=1/4的等比数列,设bn+2=3(log1/4)an(n∈N*),数列{Cn}满足Cn=an*bn

题目
已知数列{an}是首项为a1=1/4,公比q=1/4的等比数列,设bn+2=3(log1/4)an(n∈N*),数列{Cn}满足Cn=an*bn
(1)求数列{bn}的通项公式;(2)求数列{Cn}的前n项和Sn
答案要过程,详细~!
答案
(1)由题意,可得
an=(1/4)^n;
那么:
bn+2=3*log(1/4)an=3n;
所以:
bn=3n-2,为等差数列;
(2)由条件Cn= an*bn得到:
Cn= (1/4)^n*(3n-2)=3n*(1/4)^n-2*(1/4)^n
记Cn的前n项和为Sn;那么:
Sn=3[1/4+2*(1/4)^2+……+n*(1/4)^n]-2*(1/4+(1/4)^2+……+(1/4)^n);
记Pn=1/4+2*(1/4)^2+……+n*(1/4)^n; --------(1)
则有:
1/4*Pn=(1/4)^2+2*(1/4)^3+……+n*(1/4)^(n+1); ------(2)
(1)-(2)得到:
3/4 Pn=1/4+(1/4)^2+(1/4)^3+……+(1/4)^n-n*(1/4)^(n+1)
= 1/3*(1-(1/4)^n)- n*(1/4)^(n+1)
所以Sn可变形为:
Sn=3[1/3*(1-(1/4)^n)- n*(1/4)^(n+1)]-2*[1/3*(1-(1/4)^n)]
=1/3*[1-(1/4)^n]-3n*(1/4)^(n+1);
【说明】在求Sn的时候,用的方法是错位相减法,我记得教材里边在求等比数列和的时候用的就是这种方法;
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.