如图,AD是△ABC的角平分线,BE⊥AD交AD的延长线于E,EF∥AC交AB于F,求证:AF=FB.
题目
如图,AD是△ABC的角平分线,BE⊥AD交AD的延长线于E,EF∥AC交AB于F,求证:AF=FB.
答案
证明:∵AD平分∠BAC,
∴∠BAD=∠CAD,
∵EF∥AC,
∴∠FEA=∠CAD,
∴∠FAE=∠FEA,
∴FA=FE,
∵BE⊥AD,
∴∠FEA+∠FEB=90°,∠FBE+∠FAE=90°,
∴∠EBF=∠BEF,
∴EF=FB,
∴AF=FB.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点