已知,如图,在三角形ABC中,内切圆I和边BC、CA、AB分别相切于点D、E、F,求证:∠FDE=90°-1/2∠A

已知,如图,在三角形ABC中,内切圆I和边BC、CA、AB分别相切于点D、E、F,求证:∠FDE=90°-1/2∠A

题目
已知,如图,在三角形ABC中,内切圆I和边BC、CA、AB分别相切于点D、E、F,求证:∠FDE=90°-1/2∠A

答案
证明:
∵内切圆I和边BC、CA、AB分别相切于点D、E、F
∴BF=BD【从圆外一点引圆的两条切线长相等】
∴∠BDF=∠BFD=(180º-∠B)÷2=90º-½∠B
∵CD=CE
∴∠CDE=∠CED=(180º-∠C)÷2=90º-½∠C
∴∠FDE=180º-∠BDF-∠CDE=180º-(90º-½∠B)-(90º-½∠C)
=½∠B+½∠C=½(∠B+∠C)
=½(180º-∠A)
=90º-½∠A
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.