直线l点p(-2,1)且斜率为k(k>1),将直线l绕点p按逆时针方向旋转45度,得直线m,若直线l与m分别交y轴于Q、R两点,则当k取何值时,△PQR的面积最小,并求此时直线l的方程

直线l点p(-2,1)且斜率为k(k>1),将直线l绕点p按逆时针方向旋转45度,得直线m,若直线l与m分别交y轴于Q、R两点,则当k取何值时,△PQR的面积最小,并求此时直线l的方程

题目
直线l点p(-2,1)且斜率为k(k>1),将直线l绕点p按逆时针方向旋转45度,得直线m,若直线l与m分别交y轴于Q、R两点,则当k取何值时,△PQR的面积最小,并求此时直线l的方程
答案
设L:y=kx+2k+1 k=tanθ
直线M的斜率为
m=tan(θ+π/4)=(tanθ+tanπ/4)/(1-tanθ*tanπ/4)=(k+1)/(1-k)
直线M为y=(k+1)x/(1-k))+(k+3)/(1-k)
所以Q(0,2k+1);R(0,(k+3)/(1-k)) .
PQ=2k+1-(k+3)/(1-k)=(2k^2+2)/(k-1)
三角形PQR面积为【高为p到y轴距离】
S=1/2*(2k^2+2)/(k-1)*2
=(2k^2+2)/(k-1)
=2[(k-1)^2+2(k-1)+2]/(k-1)
=2[k-1+2+2/(k-1)]
用均值定理,当且仅当k-1=2/(k-1)时,S取最小值,k=1±√2,
因为k>1,所以k=1+√2
直线L的方程:y=(1+√2)x+3+2√2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.