关于x的一元二次方程x2 -(m-3)x-m2=0

关于x的一元二次方程x2 -(m-3)x-m2=0

题目
关于x的一元二次方程x2 -(m-3)x-m2=0
证明:方程总有两个不想等的实数根
设这个方程的两个实数根为x1,x2,且/x1/=/x2/-2,求m的值及方程的根.
答案
证明:因为b²-4ac=[-(m-3)]²-4×1×(-m²)=(m-3)²+4m²>0,其中m-3与m不可能同时为0,对于m取一切实数都成立
所以方程总有两个不想等的实数根

根据韦达定理得:x1+x2=m-3,x1x2=-m²≤0
由/x1/=/x2/-2得:/x1/-/x2/=-2
两边平方得:x1²+x2²-2丨x1x2丨=4
即x1²+x2²+2x1x2=4
(x1+x2)²=4
开平方得:x1+x2=±2
所以m-3=±2
解得m=5或1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.