函数f(x)=log4(x^2-ax+3a)在区间【2,+∞),则实数a的取值范围

函数f(x)=log4(x^2-ax+3a)在区间【2,+∞),则实数a的取值范围

题目
函数f(x)=log4(x^2-ax+3a)在区间【2,+∞),则实数a的取值范围
A.(-∞,4) B.(-4,4] C.(-∞,-4)U[2,+∞) D[-4,2)
递增、忘打了
答案
在区间上干嘛了= =递增?递减?连续?
选择题:
令a=-4,f(x)=log4(x^2+4x-12)显然当x=2时函数无定义(真数大于0)
排除AD
令a=4,f(x)=log4(x^2-4x+12)显然在[2,+∞)上递增(增增得增、而且定义域也符合)
所以B是正确答案.
详细的大题答案再慢慢打.
考虑函数f(x)=log4(x^2-ax+3a)在区间[2,+∞),上递增,只需要
1.x^2-ax+3a在在区间[2,+∞)上>0 恒成立
2.x^2-ax+3a在在区间[2,+∞)上递增(就可以用增增得增既法则)
令函数g(x)=x^2-ax+3a
分类讨论:
当a≤4时,
函数g(x)=x^2-ax+3a在区间[2,+∞)上递增已满足(对称轴x=a/2≤2,函数开口向上,明显在对称轴右侧递增),
g(x)在区间[2,+∞)上最小值g(x)min=g(2)=4-2a+3a=a+4>0 (函数在某区间上恒大于0等价于最小值大于0)
故-4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.