抛物线y^=4x的焦点是f,过点m(-1,0)的直线在第一象限交与a,b两点,且满足向量af*向量bf=0则ab的斜率

抛物线y^=4x的焦点是f,过点m(-1,0)的直线在第一象限交与a,b两点,且满足向量af*向量bf=0则ab的斜率

题目
抛物线y^=4x的焦点是f,过点m(-1,0)的直线在第一象限交与a,b两点,且满足向量af*向量bf=0则ab的斜率
答案
设直线为y=k(x+1),交抛物线于第一象限的A,B点,A(x1,y1),B(x2,y2),
直线方程代入抛物线方程得k^2x^2+(2k^2-4)x+k^2=0 (1)
又由向量FA*FB=0,得(x1-1,y1)*(x2-1,y2)=0 (2)
(1)式由韦达定理得x1+x2,x1*x2,代入(2)式解得
K^2=1/2
所以k=±√2/2
直线过第一象限,选正值.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.