已知向量a=(sinx,-cosx),b=(cosx,√3cosx),函数f(x)=a*b+(√3)/2
题目
已知向量a=(sinx,-cosx),b=(cosx,√3cosx),函数f(x)=a*b+(√3)/2
1,求f(x)的最小正周期,并求其图像对称中心的坐标
2,当0=
答案
a*b=(sinx,-cosx)*(cosx,√3cosx)=sinxcosx-√3cosx^2=1/2sin2x-√3/2cos2x-√3/2=sin(2x-π/3)-√3/2【这一步根据三角公式化简的】f(x)=a*b+(√3)/2=sin(2x-π/3)所以 最小正周期π图像对称中心 只需f(x)=0 x...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点