如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=DAE=90°,线段BD,CE有怎样的数量关系和位置关系?请说明理由.
题目
如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=DAE=90°,线段BD,CE有怎样的数量关系和位置关系?请说明理由.
答案
延长BD与EC交于点F,
在△ACE和△ADB中,
,
∴△ACE≌△ADB(SAS),
∴BD=CE,∠AEC=∠ADB,
∵∠ADB+∠ABD=90°
∴∠ABD+∠AEC=90°
∴∠BFE=90°,
∴BD⊥CE.
延长BD与EC交于点F,可以证明△ACE≌△ADB,可得BD=CE,且∠BFE=90°,即可解题.
全等三角形的判定与性质.
本题考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,本题中求证△ACE≌△ADB是解题的关键.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点