如图,在矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A-B-C-D以4cm/s的速度移动,点Q从C开始沿CD边以1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动.设运动时间为t(s).
(1)t为何值时,四边形APQD为矩形;
(2)如图,如果⊙P和⊙Q的半径都是2cm,那么t为何值时,⊙P和⊙Q外切.
(1)根据题意,当AP=DQ时,四边形APQD为矩形.此时,4t=20-t,解得t=4(s).
答:t为4时,四边形APQD为矩形;
(2)当PQ=4时,⊙P与⊙Q外切.
①如果点P在AB上运动.只有当四边形APQD为矩形时,PQ=4.由(1),得t=4(s);
②如果点P在BC上运动.此时t≥5,则CQ≥5,PQ≥CQ≥5>4,∴⊙P与⊙Q外离;
③如果点P在CD上运动,且点P在点Q的右侧.可得CQ=t,CP=4t-24.当CQ-CP=4时,⊙P与⊙Q外切.此时,t-(4t-24)=4,解得
t=(s);
④如果点P在CD上运动,且点P在点Q的左侧.当CP-CQ=4时,⊙P与⊙Q外切.此时,4t-24-t=4,
解得
t=(s),
∵点P从A开始沿折线A-B-C-D移动到D需要11s,点Q从C开始沿CD边移动到D需要20s,而
<11,
∴当t为4s,
s,
s时,⊙P与⊙Q外切.