问是否存在正整数x,y,使得x的平方+y的平方=2008?

问是否存在正整数x,y,使得x的平方+y的平方=2008?

题目
问是否存在正整数x,y,使得x的平方+y的平方=2008?
使用同余做的,2008=5*251,我看到251就傻了,
答案
一个整数的平方被4除余数一定是0或者1.事实上,如果整数x是偶数,那么显然x^2可以被4整除;如果x是奇数,则存在整数k使得 x=2k+1,因此 x^2=(2k+1)^2=4k^2+4k+1 被4除余1,这也就是一个整数的平方被4除余数一定是0或1.
现在 x^2+y^2=2008,因为2008能被4整除,所以x,y均为偶数(否则比较等式两边被4除的余数即得矛盾),这样可以设
x=2m,y=2n,m,n均为正整数.此时原方程化为 (2m)^2+(2n)^2=2008,两边约去4即得:m^2+n^2=251 (1)
但是251被4除余数是3,同样的方法进行讨论可知两个正整数的平方和被4除的余数只能为 0,1 或者2,因此等式两边被4除的余数不等,故不存在这样的整数m,n使得方程(1)成立,从而原方程也不存在正整数解.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.