已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x,有f(x)≥0,则f(1)f′(0)的最小值为(  ) A.2 B.52 C.3 D.32

已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x,有f(x)≥0,则f(1)f′(0)的最小值为(  ) A.2 B.52 C.3 D.32

题目
已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x,有f(x)≥0,则
f(1)
f′(0)
的最小值为(  )
A. 2
B.
5
2

C. 3
D.
3
2
答案
∵f(x)≥0,知
a>0
△=b2−4ac≤0
,∴c
b2
4a

又f′(x)=2ax+b,
∴f′(0)=b>0,f(1)=a+b+c.
f(1)
f(0)
=1+
a+c
b
≥1+
a+
b2
4a
b
=1+
4a2+b2
4ab
≥1+
2
4a2b2
4ab
=2.
当且仅当4a2=b2时,“=”成立.
故选A.
由对于任意实数x,f(x)≥0成立求出a的范围及a,b c的关系,求出f(1)及f′(0),作比后放缩去掉c,通分后利用基本不等式求最值.

导数的运算;函数恒成立问题;基本不等式.

本题考查了函数恒成立问题,考查了导数的运算,训练了利用基本不等式求最值,关键是通过放缩转化为含有两个变量的代数式,是中档题.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.