若函数f(x)=logax(其中a>0且a≠1)在x∈[2,+∞)上总有|f(x)|>1成立,求a的取值范围.

若函数f(x)=logax(其中a>0且a≠1)在x∈[2,+∞)上总有|f(x)|>1成立,求a的取值范围.

题目
若函数f(x)=logax(其中a>0且a≠1)在x∈[2,+∞)上总有|f(x)|>1成立,求a的取值范围.
答案
(1)若a>1,x≥2时,logax>0,
由|f(x)|>1得f(x)>1,即logax>1恒成立.
∴x>a恒成立,∴1<a<2.
(2)若0<a<1,x≥2时logax<0,
由|f(x)|>1得f(x)<-1.即logax<-1恒成立,也即x>
1
a
恒成立,
1
a
<2.∴
1
2
<a<1,
综上,a的取值范围为(
1
2
,1)∪(1,2).
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.