设P为三角形ABC BC边上任意一点,连结AP,AP的垂直平分线交AB于M,交AC于N,求证 BP·BC=MB·CN

设P为三角形ABC BC边上任意一点,连结AP,AP的垂直平分线交AB于M,交AC于N,求证 BP·BC=MB·CN

题目
设P为三角形ABC BC边上任意一点,连结AP,AP的垂直平分线交AB于M,交AC于N,求证 BP·BC=MB·CN
答案
连接PM、PN
因为MN垂直平分AP
所以∠BAP=∠MPA
∠CAP=∠APN
又因为∠BAP+∠CAP=60
所以∠MPA+∠APN=60
所以∠BPM+∠NPC=120
又因为∠B=60 所以∠BMP+∠BPM=120
所以∠NPC=BMP
又因为∠B=∠C=60
所以△BMP相似于△CPM
所以BP/CN=BM/PC
BP*PC=BM*CN
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.