直线y=x-2与抛物线y2=2x相交于A、B两点,求证:OA⊥OB(O为坐标原点)

直线y=x-2与抛物线y2=2x相交于A、B两点,求证:OA⊥OB(O为坐标原点)

题目
直线y=x-2与抛物线y2=2x相交于A、B两点,求证:OA⊥OB(O为坐标原点)
答案
证明:联立直线与抛物线方程得y2-2y-4=0
∴y1+y2=2,y1y2=-4
∴x1x2=(y1+2)(y2+2)=y1y2+2(y1+y2)+4=4
y1y2
x1x2
=-1
即(y1/x1)(y2/x2)=-1
kOA=
y1
x1
,kOB=
y2
x2

∴kOA•kOB=
y1y2
x1x2
=-1
∴OA⊥OB
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.