高数中值定理证明题

高数中值定理证明题

题目
高数中值定理证明题
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明对任意给定的正数a和b,在(0,1)内存在不相等的实数ξ,η,使得a/f'(ξ)+b/f'(η)=a+b
答案
由连续性可取一点c使得f(c)=a/(a+b),然后在[0,c]和[c,1]上用Lagrange中值定理即可.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.