求由参数方程确立的二阶导数d^2*y/dx^2
题目
求由参数方程确立的二阶导数d^2*y/dx^2
x = t - 2arctant ; y = t^3/3 -t
我把dx/dt和dy/dt算了出来,然后用第二个除以第一个,得到dy/dx,这样处理是否正确,然后在将dy/dx的结果对t微分,得到二阶导数,这样处理正确不?但是算出来跟答案差得很远,第一步应该是对的,主要是第二步怎么处理.
答案
dx/dt=-2[1/(1+t^2)],dy/dt=t^2-1则y'=dy/dx=(dy/dt)/(dx/dt)=[t^2-1]/{-2[1/(1+t^2)]}=(1/2)(1-t^4)
则dy'/dt=-2t^3
y"=dy'/dx=(dy'/dt)/(dx/dt)=(-2t^3)/{-2[1/(1+t^2)]}=t^3(1+t^2)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点