已知椭圆长轴的一个端点为(3,0),离心率e=√6/3,求椭圆标准方程

已知椭圆长轴的一个端点为(3,0),离心率e=√6/3,求椭圆标准方程

题目
已知椭圆长轴的一个端点为(3,0),离心率e=√6/3,求椭圆标准方程
连着的第二道,双曲线焦点在x轴上,实轴长为4√5,且过点(-5,2),求双曲线标准方程
答案
1、一个端点为(3,0),——》a=3
——》c=ea=(v6/3)*3=v6,
——》b=v(a^2-c^2)=v3,
——》椭圆标准方程为:x^2/a^2+y^2/b^2=x^2/9+y^2/3=1;
2、双曲线焦点在x轴上,所以设其方程为:x^2/a^2-y^2/b^2=1,
实轴长为4√5=2a,——》a=2v5,
将点(-5,2)的坐标值代入得:(-5)^2/(2v5)^2-2^2/b^2=1,
——》b^2=16,
即双曲线标准方程为:x^2/20-y^2/16=1.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.