证明函数f(x)=lnx-x2+x只有一个零点.

证明函数f(x)=lnx-x2+x只有一个零点.

题目
证明函数f(x)=lnx-x2+x只有一个零点.
答案
证明:f(x)=lnx-x2+x,其定义域是(0,+∞),∴f′(x)=1x−2x+1=−2x2−x−1x令f'(x)=0,即−2x2−x−1x=0,解得x=−12或x=1.∵x>0,∴x=−12舍去.当0<x<1时,f'(x)>0;当x>1时,f'(x)<0.∴...
求导函数,确定函数的单调性,即可得出函数的零点.

函数的零点.

本题考查函数的零点,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.