如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是28cm2,AB=20cm,AC=8cm,求DE的长.
题目
如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是28cm
2,AB=20cm,AC=8cm,求DE的长.
答案
∵在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,
∴DE=DF,
∵△ABC面积是28cm
2,AB=20cm,AC=8cm,
∴S
△ABC=
AB•DE+
AC•DF=28,
即
×20×DE+
×8×DF=28,
解得DE=2cm.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点