关于x的方程x²-(5k+1)x+k²2=0是否存在负数k,使方程的两个实数根的倒数和等于4?

关于x的方程x²-(5k+1)x+k²2=0是否存在负数k,使方程的两个实数根的倒数和等于4?

题目
关于x的方程x²-(5k+1)x+k²2=0是否存在负数k,使方程的两个实数根的倒数和等于4?
若存在求出满足条件的k的值;若不存在,说明理由
答案
题目好像是k²-2
由韦达定理得
x1+x2=5k+1
x1x2=k²-2
由于两个实数根的倒数和等于4
所以 1/x1+1/x2=4
通分得 (x1+x2)/x1x2=4
∴ (5k+1)/(k²-2)=4
得到k1=9/4,k2=-1而Δ>=0于任意的k都满足
故k=-1
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.