设a,b,c是三角形ABC三边之长,求证:(1)a2+b2+c2≧ab+bc+ca (2)a2+b2+c2<2(ab+bc+ca)

设a,b,c是三角形ABC三边之长,求证:(1)a2+b2+c2≧ab+bc+ca (2)a2+b2+c2<2(ab+bc+ca)

题目
设a,b,c是三角形ABC三边之长,求证:(1)a2+b2+c2≧ab+bc+ca (2)a2+b2+c2<2(ab+bc+ca)
答案
1.a^+b^2+c^2-(ab+bc+ac)
=[(a^2-2ab+b^2)+(a^2-2ac+c^2)+(b^2-2bc+c^2)]/2
=[(a-b)^2+(a-c)^2+(b-c)^2]/2≥0,
2.2(ab+bc+ca)
=(ab+bc)+(bc+ca)+(ca+ab)
=b(a+c)+c(a+b)+a(b+c)
>b*b+c*c+a*a
=a^2+b^2+c^2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.