已知a不等于e,e是单位向量,满足 对任意t属于实数,恒有/a-te/大于等于/a-e/,证明e垂直(a-e)
题目
已知a不等于e,e是单位向量,满足 对任意t属于实数,恒有/a-te/大于等于/a-e/,证明e垂直(a-e)
答案
设m=向量a·向量e依题意|a-te|^2≥|a-e|^2a^2-2mt+t^2≥a^2-2m+1t^2-2mt+2m-1≥0对任意实数上式成立,有Δ=(-2m)^2-4(2m-1)≤0m^2-2m+1≤0(m-1)^2≤0所以只有m=1即 向量a·向量e=1所以只有e.(a-e)=e.a-e^2=1-1=0即向...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点