fxy=fx+fy,f1/3=1如fx+f2-x

fxy=fx+fy,f1/3=1如fx+f2-x

题目
fxy=fx+fy,f1/3=1如fx+f2-x<2,求x取值范围
设函数y=fx在定义域R上的减函数
答案
因为f(xy)=f(x)+f(y),
所以 f(1/9)=f(1/3)+f(1/3)=2
从而,不等式 f(x)+f(2-x)<2
可化为 f[x(2-x)]又f(x)是减函数,所以
x(2-x)>1/9
9x²-18x+1<0
解得 (3-2√2)/3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.