已知数列{an}满足an+an+1=2n+1(n∈N*),求证:数列{an}为等差数列的充要条件是a1=1.

已知数列{an}满足an+an+1=2n+1(n∈N*),求证:数列{an}为等差数列的充要条件是a1=1.

题目
已知数列{an}满足an+an+1=2n+1(n∈N*),求证:数列{an}为等差数列的充要条件是a1=1.
答案
充分性:∵an+an+1=2n+1,
∴an+an+1=n+1+n,
即an+1-(n+1)=-(an-n),
若a1=1,则a2-(1+1)=-(a1-1)=0,
∴a2=2,以此类推得到an=n,
此时{an}为等差数列.
必要性:
∵an+an+1=2n+1,
∴an+2+an+1=2n+3,
两式相减得an+2-an=2,
若数列{an}为等差数列,则an+2-an=2d,
即2d=2,∴d=1.
则an+an+1=2an+1=2n+1,
∴an=n,即a1=1成立.
综上数列{an}为等差数列的充要条件是a1=1.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.