如图,设直角三角形边长AC=x,BC=y,AD=DE=EB=z 则有AB=3z
由余弦定理可知:CD^2=AD^2+AC^2-2AD*AC*cosA=(sina)^2 式1 cosA=x/3z (邻边比斜边)
CE^2=EB^2+BC^2-2EB*BC*cosB=(cosa)^2 式2 cosB=y/3z(邻边比斜边)
上两等式相加,代入数据则有:2z^2+x^2+y^2-2x^2/3-2y^2/3=1
再次化简:(x^2+y^2)/3+2z^2=1 根据勾股定理又知:x^2+y^2=AB^2=9z^2
3z^2+2z^2=1
解得 z=(根号5)/5
所以AB=3z=3*(根号5)/5