设a∈R,函数f(x)=lnx-ax.已知x1=√e(e=2.71828L)和x2是函数f(x)的两个不同零点,

设a∈R,函数f(x)=lnx-ax.已知x1=√e(e=2.71828L)和x2是函数f(x)的两个不同零点,

题目
设a∈R,函数f(x)=lnx-ax.已知x1=√e(e=2.71828L)和x2是函数f(x)的两个不同零点,
求a的值并证明x2>e的二分之三次方
答案
f(x)=lnx-ax
f(√e)=ln√e-a√e=0
1/2-a√e=0
a=1/(2√e)
证明
f(e^(3/2))=lne^(3/2)-1/(2√e)*e^(3/2)=(3-e)/2>0
f(e²)=lne²-1/(2√e)*e²=2-1/2*e^3/2约等于=2-1/2*2.7^3/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.