求下列函数的导数.①y=(2x²+3)(3x-1); ②y=(√x-2)²; ③y=x-sin(x/2)cos(x/2); ④y=[ln(2x+3)]/x²+1.

求下列函数的导数.①y=(2x²+3)(3x-1); ②y=(√x-2)²; ③y=x-sin(x/2)cos(x/2); ④y=[ln(2x+3)]/x²+1.

题目
求下列函数的导数.①y=(2x²+3)(3x-1); ②y=(√x-2)²; ③y=x-sin(x/2)cos(x/2); ④y=[ln(2x+3)]/x²+1.
答案
求下列函数的导数
(1) y=(2x²+3)(3x-1)
y=(2x²+3)(3x-1)=6x³-2x²+9x-3,故y′=18x²-4x+9
(2) y=√(x-2)²
y=√(x-2)²=︱x-2︱
当x≧2时,y=x-2,此时y′=1;当x≦2时,y=-(x-2)=-x+2,此时y′=-1.
(3) y=x-sin(x/2)cos(x/2)
y′=x′-{[sin(x/2)]′cos(x/2)+sin(x/2)[cos(x/2)]′}
=1-{[cos(x/2)](x/2)′cos(x/2)+sin(x/2)[-sin(x/2)](x/2)′}
=1-[(1/2)cos²(x/2)-(1/2)sin²(x/2)]=1-(1/2)[cos²(x/2)-sin²(x/2)]=1-(1/2)cosx
注“为什么(3x)'=3?”是因为(3x)′=3′x+3x′=0×x+3×1=3
常量的导数=0,即c′=0,3是常量,故3′=0;(xⁿ)′=nxⁿֿ¹.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.