设函数f(x)在区间[0,1]上连续,证明至少存在一点ξ属于(0,1)使得 f(ξ)(1-ξ)=∫(0~ξ)f(x)dx

设函数f(x)在区间[0,1]上连续,证明至少存在一点ξ属于(0,1)使得 f(ξ)(1-ξ)=∫(0~ξ)f(x)dx

题目
设函数f(x)在区间[0,1]上连续,证明至少存在一点ξ属于(0,1)使得 f(ξ)(1-ξ)=∫(0~ξ)f(x)dx
答案
这个题用积分中值定理比较困难,不妨换个角度用微分中值定理.如果设F(x) = ∫ f(t)dt,则所证式可变为(1-ξ)F'(ξ) = F(ξ),是一道比较常见的微分中值定理的题目.由此观察,我们给出证明如下.设g(x) = (x-1)*∫ f(t)dt,...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.