若两圆x2+y2-10x-10y=0与x2+y2-6x+2y-40=0相交于两点,则它们的公共弦所在直线的方程是_.

若两圆x2+y2-10x-10y=0与x2+y2-6x+2y-40=0相交于两点,则它们的公共弦所在直线的方程是_.

题目
若两圆x2+y2-10x-10y=0与x2+y2-6x+2y-40=0相交于两点,则它们的公共弦所在直线的方程是______.
答案
∵两圆为x2+y2-10x-10y=0①,x2+y2-6x+2y-40=0②
②-①可得:4x+12y-40=0
即x+3y-10=0
∴两圆的公共弦所在直线的方程是x+3y-10=0
故答案为:x+3y-10=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.