设a>0,函数f(x)=1/x^2+a 证明:存在唯一实数x0∈(0,1/a),使f(x0)=x0
题目
设a>0,函数f(x)=1/x^2+a 证明:存在唯一实数x0∈(0,1/a),使f(x0)=x0
答案
这个a是加在分母上的吗?如果是的话,那解法如下,如果不是,那我没办法!即证在x∈(0,1/a)上,方程f(x)=x有唯一解而方程方程f(x)=x即1/(x^2+a)=x可化成x^3+ax-1=0令g(x)=x^3+ax-1 问题就转化为g(x)=0在x∈(0,1/a)上有唯一...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点