如图,在三角形ABC中,AB=AC,角A=120度,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF

如图,在三角形ABC中,AB=AC,角A=120度,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF

题目
如图,在三角形ABC中,AB=AC,角A=120度,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF
答案
做∠BAG=30° 交BC于G,则∠GAC=90°
∵∠A=120° 则∠B=∠C=30°
BG=AG
EF垂直平分AC
EF为△AGC的中位线 ∴GF=FC
EF=1/2AG
易证 EF=1/2FC
FC=AG=GF=BG
∴BF=2CF
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.