已知:三角形ABC中,∠A=90°,AB=AC,D为BC边中点,(1)如图,E、F分别是AB、AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若EF分别为AB、CA延长线.完整题目如下

已知:三角形ABC中,∠A=90°,AB=AC,D为BC边中点,(1)如图,E、F分别是AB、AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若EF分别为AB、CA延长线.完整题目如下

题目
已知:三角形ABC中,∠A=90°,AB=AC,D为BC边中点,(1)如图,E、F分别是AB、AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若EF分别为AB、CA延长线.完整题目如下
答案
(1)连DE,DF,AD,EF.因为三角形ABC是等腰直角三角形,所以AD=BD,角DAF=角DBE=45度,又BE=AF,所以三角形DAF全等于三角形DBE,从而 DE=DF,角BDE=角ADF.这样角EDF=角EDA+角ADF=角EDA+角BDE=角BDA=90度,所以三角形DEF是等腰直角三角形.x0d(2)连DE,DF,AD,EF.仍然利用三角形ABC是等腰直角三角形,AD=BD,但此时E,F分别在AB,CA延长线上,所以角FAD=角EBD=135度,又AF=BE,所以三角形FAD全等于三角形EBD,因此DE=DF,角EBD=角FDA.而角EDF=角EDB+角BDF=角ADF+角BDF=角ADB=90度,所以三角形DEF仍为等腰直角三角形.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.